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The performance of forward error 
correction codes has been well documented in 
the open literature when the noise is 
additive, white and Gaussian. Little or no 
work exists on the performance of forward 
error correction codes when the noise is due 
primarily to multiple access interference. In 
this paper, we examine the performance of BCH 
and convolutional codes in a direct-sequence 
spread spectrum packet radio network. Packet 
errors are caused by a combination of noise at 
the receiver and interference between packet 
transmissions which overlap in time. The 
interference between packet transmissions 
produces dependent symbol errors at the output 
of the demodulator. In our work, we compute 
first an upper bound on the symbol error 
probability. Then we use this upper bound to 
calculate upper bounds on the packet error 
probability for both BCH and convolutional 
codes. Our results enable us to compare the 
performance of BCH and convolutional codes in 
the presence of multiple access interference. 

- 1. Introduction 

An attribute of spread spectrum 
signalling is its multiple access capability 
[l]. The most important indicator of the 
multiple access capability of a packet radio 
network is the induced packet probability. 

The problem of computing packet error 
probabilities in direct-sequence spread 
spectrum (DS-SS) packet radio networks is 
difficult. Packet errors are caused by a 
combination of noise at the receivers and 
interference between packet transmissions, 
which overlap in time. The interference 
between packet transmissions produces 
dependent errors at the output of the 
demodulator. A lot of work has been directed 
towards the evaluation of the bit error 
probability in direct-sequence spread spectrum 
networks ([2], [3]). The dependency of the 
bit errors does not allow us to extend the 
results in [2] and [SI, in order to compute 
the packet error probability. 

In our work, we are going to examine the 
multiple access capability of a DS-SS packet 
radio network when BCH and convolutional codes 
are used for the encoding of the packets. It 
is worth noting that the performance of 
convolutional codes in a multiple access SS 
enviroment has been examined before ([4], 
equal power signals only). Furthermore, the 
performance of BCH codes in a multiple access 
SS environment has been dealt with in [5]. 
This paper uses the techniques developed in 
[4] and [5] to provide a full scale comparison 
between BCH and convolutional codes. Our 
numerical results indicate that BCH codes 
outperform convolutional codes, in a multiple 
access DS spread spectrum environment. 
Additional work is needed though to make more 
meaningful conclusions, since the numerical 
results correspond to upper bounds on the 
packet error probabilities. 

- 2. The Model - Preliminaries 

The model for direct sequence spread 
spectrum transmission considered here is 
described in [SI. The only difference is that 
the signature sequence is assumed to be 
sequence of independent, identically 
distributed, binary random variables (called 
chips), each equally likely to be +1 or -1. 
Each transmitter in the network has such a 
sequence, and each sequence is assumed to be 
independent of the sequences of other 
transmitters. 

Let us assume that we have a slotted 
channel, K (K>l) packet transmissions occur 
within a slot, and a receiver locks on to 
packet #l. Our objective is to compute the 
probability that the receiver decodes packet 
#1 incorrectly. We denote this probability by 
pew). 

The receiver is assumed to be a 
correlation receiver. The output of the 
recceiver corresponding to the mth bit 
(O<m<M-1) of packet #1. is the random variable 
(see [l] for details) 
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Z, = nm + (2-'Pl)''%'{b>') + 

Each nm is a Gaussian random variable 

with zero mean and variance N0T/4, where 
N0/2 is the two sided spectral density of the 
white Gaussian noise and T is the data bit 
duration. The random variables nm (O<m<M-1) 

are independent. The variable b(') 
represents a pair of consecutive data bits of 
packet #l. In particular, 5; = (b:!!, bLi)), 

and each data bit bp) is either +1 or -1. 
Each ti or ei is a random variable 
representing the time delay (modulo T) or the 
phase angle (modulo 2T). respectively, of 
packet #i relative to packet #1. As in [4]. 
we take the range of ti to be the interval 
(O.T] and the range of ei to be the interval 
CO,%). Finally, Pi is the power of packet 

#i at the receiver. The function which 
appears in (1). represents the normalized 
multiple access interference due to packet #i. 
It depends on bi, ti, ei and the signature 
sequences corresponding to packets #i and #l 
(see [4] for more details). 

m 

The detector decides that the mth bit of 
packet #l is +1 or -1 if Zm>O or Zm<O. 
respectively. It is easy to show that the mth 
bit of packet #1 is decoded correctly by the 
above detector if and only if the random 
var iab 1 e 

K (1) 
Xm = n: + [l + 2 b, (Pi/Pl)ln 

i=2 

is positive. In (2) each n: is a Gaussian 
random variable with mean 0 and variance 
No/%, where %=PIT is the energy per data 

m 
bit of packet #1. The random variables n * 
(O<m<M-l) are statistically independent. 

Let us now state two propositions. 

ProDosition 1. For the computation of Pe(K) 
the ti's (2<i<K) need be known only to the 
nearest chip. 

ProDosition 2 The packet error probability 
Pe(K) is independent of the values of the 
data bit sequences. 

The validity of propositions 1 and 2 is 
based on the fact that random signature 

An immediate sequences are utilized. 
consequence of propositions 1 and 2, is that 
the random variable Xm in (2) assumes the 
following equivalent form 

K (1) 
Xm = n * + [l + H bm (Pi/Pl)1'2{[ag!l ag)] + 

i=2 m 

(3) 

In (3) we assumed a rectangular chip 
waveform and N chips per bit; Tc is the chip 

duration, and [aii)} is the signature 

sequence corresponding to packet #i. 

The derivation of the upper bounds on the 
packet error probability Pe(K), presented in 
the next section, will be based on the 
following assumption. 

Assumption 1. Given the phase (ei) and 
the delay (ti) of each interfering 
transmission (2<i<K), the random variables 
Xm (O<m<M-1) are independent. 

In [5] a detailed discussion is conducted 
that justifies the adoption of the above 
assumption for the computation of upper bounds 
on the packet error probability induced in our 
sys tem. 
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3. Upper bounds on the packet error 
probabilitv. 

Let us denote by p the symbol (bit) 
error probability induced in our system. 
Obviously, 

p = Pr(X <0) 

In [4] it is shown that for equal power 
signals at the receiver site the symbol (bit) 
error probability is upper bounded by the 
following expression: 

= Q[2Eb/No)1/2] + 

where 

and 

Q(x) = ( 2 ~ ) - ~ / ~ ~ & p (  -u2/2) du 

Furthermore, in [5] a differenct upper 
bound (r) on the symbol (bit) error 
probability is derived. In particular, it is 
shown that 

* 
r = inf{exp(-z)E[exp(mo)] 

210 

with 

N-l(i) 

j=o J 

Ji = [I a./N]: 2<i<K (9) 

The r bound on the symbol error 
probability is valid independently of whether 
signals arrive with equal or unequal power at 
the receiver site. However, for equal power 
signals, the q bound is tighter than the r 
bound. 

Due to assumption 1, we can show that 
(see ~51) 

M B 
B [ F]S~(I-S)~-~] = Pe(K) (10) Pe(K) $ 

i=e+l 

for BCH codes. In (lo), s corresponds to q 
for equal power signals and to r for unequal 
power signals. 

Futhermore, for convolutional codes we 
can show that (see [4], [SI) 

Where s corresponds to q for equal power 
signals and to r for unequal power signals. 
L is the number of information bits in the 
code. P ( s ) ,  the union bound, is difficult to 
evaluate exactly, and all analytical results 
are based on bounding Pu(s) in terms of the 
transfer function T(D) of the code. The bound 
of Van de Meerberg [SI is used for the results 
presented here: it is given by 

. U  

Pu(s) < rn {1/2[T(D) + T(-D)] + 
0 

where 

2n -1 
rn 0 = [ n 0 ]2-2n0 

and n is one half of the free distance of 
the code (or one half of the "free distance 
plus one" if the free distance is odd). 

4. Numerical Results - Conclusions. - 

In Table 1, the upper bounds f(K) and 

PZ(K) on the packet error probability Pe(K) 
are shown. Results are shown f o r  the (63,30), 
(127,64), (255,131) and (1023,513) BCH codes. 
The best rate 1/2 constraint-length-7 binary 
convolutional codes are used. To make a fair 
comparison with the BCH codes we chose our 
convolutional codes to be approximately of the 
same length as our BCH codes (i.e. 60, 128, 
262, 1026 length codes). The entries in Table 
1 corresponds to different K choices, 
signal-to-noise ratio of 15dB, near far ratios 
of OdB, 3dB, 6dB. and N = 127. 

The numerical results show that the BCH 
codes outperform convolutional codes, at least 
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for the bounds computed here. For shorter 
length codes the results are comparable. 
However, for larger length codes the 
comparison favors BCH codes. It is best to 
keep in mind that the performance of the 
convolutional codes is the result of three 
upper bounds for the bit error probability 
(p). the union bound (Pu), and the packet 
error probability (P,). The calculation of 
the performance of the BCX codes is based on 
one upper bound for the bit error probability 
(p). Hence, at least part of the difference 
in performance may be due to looseness in the 
bounds computed for the convolutional codes. 
We are currently investigating the tightness 
of these bounds in an effort to make a more 
conclusive comparison regarding the 
performance of BCH and convolutional codes in 
Ds-SS multiple access environment. 
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TABLE 1 

Upper Bounds on the Packet Error 
Probability Pe(K) 

%/No = 15 dB. 
N = 127, 

Near-Far Ratio 
=3dB 

M 
---- 
63 
127 
255 
1023 

63 
127 
255 
1023 

63 
1 27 
255 
1023 

63 
127 
255 
1023 

63 
1 27 
255 
1023 

09 63 
127 
255 
1023 

-------- 
2.97E- 16 
1. 60E-23 
2.83E-38 
9.12E-69 

2. ME-1 1 
6. %E-16 
3.47E-25 
1 .29E-66 

3.06E-08 
5.48E-11 
1.04-16 
4.24-41 

4.77E-06 
1 .29E-07 
5.59E-11 
2.86E-24 

1.73E-04 
2.88E-05 
4.55E-07 
3.llE-13 

2.31E-03 
1.24-03 
1.98E-04 
1.85E-06 

M 
---- 
60 
128 
262 
1026 

60 
128 
262 
1026 

60 
128 
262 
1026 

60 
128 
262 
1026 

60 
128 
262 
1026 

60 
128 
262 
1026 

-------- 
3.86E- 13 
8.24-13 
1.68E-12 
6.60E- 12 

1.19E-09 
2.55E-09 
5.23E-09 
2.05E-08 

2.60E-07 
5.54-07 
1.13E-06 
4.44-06 

1.28E-05 
2-74-05 
5.61E-05 
2.2OE-04 

2.69E-04 
5.74-04 
1.17E-03 
4.59E-03 

3.72E-03 
7.93E-03 
1.61E-02 
6.18E-02 
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TABLE 1 

Upper Bounds on the Packet E r r o r  
Probability Pe(K) 

K= U 
-- ---- 
07 63 

127 
255 

1023 

08 63 
1 27 
255 

1023 

09 63 
127 
255 

1023 

10 63 
127 
255 

1023 

11 63 
127 
255 

1023 

12 63 
127 
255 

1023 

13 63 
1 27 
255 

1023 

14 63 
127 
255 

1023 

15 63 
1 27 
255 

1023 

-------- 
2.7OE-23 
1.39E-34 
2.26E-57 
0 . OOE+OO 

1. WE-20 
4.15E-30 
1.2OE-49 
0 . OOE+OO 

3.7OE-18 
1.63E-26 
1 .94E-43 
0 . OOE+OO 

2.82E-16 
1.47E-23 
2.45E-38 
0 . OOE+OO 

1.05E-14 
4.36E-21 
4.5OE-34 
0 . OOE+OO 

2.29E-13 
5.44E-19 
1 .85E-30 
0.00E+00 

3.23E- 12 
3.43E- 17 
2.34E-27 
3.42E-73 

3.21E-11 
1.25E-15 
1.14E-24 
4.78E-65 

2.4OE-10 
2.90E- 14 
2.54-22 
5.96E-58 

U 
---- 

60 
128 
262 

1026 

60 
1 28 
262 

1026 

60 
128 
262 

1026 

60 
128 
262 

1026 

60 
128 
262 

1026 

60 
128 
262 

1026 

60 
128 
262 

1026 

60 
128 
262 

1026 

60 
128 
262 

1026 

3.60E-18 
7.69E-18 
1.57E-17 
6.17E-17 

3.93E-16 
8.39E-16 
1.71E-15 
6.73E-15 

1.33E-14 
2.84-14 
5.81E-14 
2.27E- 13 

3.86E- 13 
8.24E- 13 
1.68E-12 
6.60E-12 

5.44E- 12 
1.16E-11 
2.37E-11 
9.31E- 1 1 

5.18E-11 
1.1OE-10 
2.26E- 10 
8.85E- 10 

3.64-10 
7.78E-10 
1 .59E-09 
6.23E-09 

2.02E-09 
4.31E-09 
8.82E-09 
3.45E-09 

9.2OE-09 
1.96E-08 
4.01E-08 
1 .57E-07 

TABLE 1 

Utmer Bounds on the Packet E r r o r  1 1  

K= U 
-- -_-- 
03 63 

127 
255 

1023 

04 63 
1 27 
255 

1023 

05 63 
127 
255 

1023 

Probability Pe(K) 

-------- ---- 
1.7lE-11 60 
4.67E-16 128 
2.1OE-25 262 
2.87E-67 1026 

4.35E-06 60 
1.12E-07 128 
4.42E-11 262 
1.46E-24 1026 

2.19E-03 60 
1.16E-03 128 
1.76E-04 262 
1.4OE-06 1026 

-------- 
1.W-09 
2.23E-09 
4.57E-09 
1 .79E-W 

1.19E-05 
2.55E-05 
5.22E-05 
2.04E-04 

3.5OE-03 
7.47E-03 
1.52E-02 
5.83E-02 
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